Abstract
For evaluating pneumococcal vaccines, the opsonophagocytic killing assay (OPKA) is useful as a supplement to the pneumococcal antibody enzyme-linked immunosorbent assay (ELISA). However, evaluations of pneumococcal vaccines require the determination of antibody responses to 7 to 11 serotypes, and the OPKA is tedious to perform and requires more serum than the ELISA. Consequently, the OPKA is infrequently used for evaluating pneumococcal vaccines. To overcome these limitations, we have developed a simple multiplexed (double-serotype) OPKA by using antibiotic-resistant pneumococci for nine serotypes. Serotype 6B, 9V, 19A, and 23F strains were made streptomycin resistant, and serotype 4, 6A, 14, 18C, and 19F strains were made optochin resistant. The multiplexed OPKA was the same as the single-serotype OPKA except for two changes. First, the target bacteria were a mixture of one streptomycin-resistant strain and one optochin-resistant strain. Second, the surviving bacteria of each serotype were enumerated by plating on Todd-Hewitt agar plates with yeast extract and an agar overlay containing the appropriate antibiotics and 2,3,5-triphenyl tetrazolium chloride. The performance of the multiplexed OPKA was evaluated by analyzing 28 serum samples from adults immunized with a 23-valent polysaccharide vaccine by using the single-serotype OPKA and the multiplexed OPKA. The multiplexed OPKA was specific for the desired serotypes. The multiplexed and conventional OPKAs had comparable assay sensitivities and produced results that were highly correlated (r2 values ranging from 0.92 to 0.98) for all nine serotypes. A simple modification of the conventional OPKA produces a multiplexed assay that greatly reduces effort, reagents, and the necessary amount of serum.

Link to original article